3346

THE INFRARED ABSORPTION SPECTRA OF MIXED $Ag_3[AsO_4, VO_4]$ CRYSTALS

Bohumil HÁJEK, Alexander MUCK and Olga SMRČKOVÁ

Department of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague 6

Received December 22nd, 1978

Mixed Ag₃[AsO₄, VO₄] crystals were prepared over the whole concentration range. In the 0-40% mol. vanadate concentration range the mixed crystals are isostructural with Ag₃AsO₄ (T_4^4 , Z = 2). Site and factor-group analyses were carried out for this space group and structure. Above 60 mol% vanadate, the mixed crystals are tetragonal with Ag₃VO₄ structure. It follows from the behaviour of the v_4 AsO₄³ vibration that, in cubic mixed crystals with 40 mol% Ag₃VO₄, the site-symmetry *T* is reduced to effective site-symmetry C_3 by the effect of lattice vibrations of the *T*(F) and *R*(F) types.

The infrared spectra of pure polycrystalline substances do not permit study of all the effects of crystal symmetry and this it is useful to study the spectra of mixed crystals. The possibility of studying these crystals considering crystal symmetry was mentioned briefly in a previous work¹ dealing with polycrystalline Ag₃ [PO₄, VO₄]. This work deals with the Ag₃ [AsO₄, VO₄] system where the size of the AsO₄³⁻ and VO₄³⁻ anions permits the formation of mixed crystals.

For interpretation of the infrared spectra it is necessary to know the crystallographic data for the initial components. Helmholz and Levin² found cubic space group $T_d^4 - P\bar{4}3n$ (Z = 2, a = 612 pm) for Ag₃AsO₄. The structure of Ag₃VO₄ has not yet been determined, but the interplane distances in polycrystalline samples have been assigned indexes¹ in a tetragonal system (Z = 4, a = 925, c = 695). Differing structures of the initial substances appear as changes in the structure of the mixed crystal at a certain component ratio. The infrared spectrum of Ag₃AsO₄ has not been described in detail³; the spectrum of polycrystalline Ag₃VO₄ is given in work¹. The infrared and Raman spectra of aqueous solutions of vanadates were given by Griffith and Lesniak⁵. The spectra of mixed Ag₃[PO₄, AsO₄] and Ag₃[PO₄, VO₄] crystals were evaluated from the point of yiew^{1.6} of site- and factor-group analysis and considering the effective site-symmetry.

Study of the infrared spectra of the pure substances and mixed crystals considering the effect of crystal symmetry, *i.e.* study of the correlation $G_M \rightarrow G_S \rightarrow G_F$ or $G_S \rightarrow G_{S-eff}$, is the purpose of this work.

EXPERIMENTAL

Samples of mixed crystals and pure initial components were prepared by precipitation from an aqueous solution of sodium vanadate (V_2O_5 in NaOH solution) and Na_2HaSO_4 with a $AgNO_3$ solution at pH ~ 14. The high alkalinity of the solution is a condition for formation of VO_4^{3-1} ions⁵; at lower pH values $V_2O_7^{4-1}$ and $(VO_3)_n^{n-1}$ ions are formed. The AsO_4^{3-1} and VO_4^{3-1} ratio changes in 0-1 mol steps over the whole concentration range. The precipitates obtained were dried in the air at laboratory temperature. Analysis of the infrared and X-ray spectra indicated that the samples did not contain polyanions.

X-ray analysis of powder samples was carried out on a Giegerflex difractograph from Rigaku Denki (Japan) with a Cu anode, Ni filter and a Geiger-Müller detector. Samples with 0-40 mol% Ag₃VO₄ were cubic and the *d* value indexing, determination of the lattice parameters and choice of possible space groups was carried out on a Tesla 200 computer using our own program⁷. Indexes were assigned to the other samples graphically by the reciprocal lattice method described by Gattow⁸.

Infrared spectra were measured on a Perkin-Elmer 325 grating spectrophotometer using KBr pellets (13 mm in diameter) over the range $4000 - 200 \text{ cm}^{-1}$.

RESULTS AND DISCUSSION

X-Ray Analysis

The lattice parameters of the pure substances and mixed $Ag_3[AsO_4, VO_4]$ crystals found by X-ray analysis are given in Table I. Samples containing $0-40 \text{ mol}\% Ag_3VO_4$

TABLE I

Lattice Parameters and Wavenumbers of the $\gamma_4AsO_4^{3-}$ Vibrations in Ag_3[AsO_4, VO_4] Mixed Crystals

Ag ₃ VO ₄ mol %	Cubic <i>a</i> , pm or tetragonal <i>a</i> , <i>c</i> , pm		V.10 ⁻⁶ pm ³ v	Wavenumbers of the $v_4 AsO_4^{3-}$ vibration, cm ⁻¹
0	612 + 1		229 + 1	405 vs
10	613 ± 1		230 ± 1	405 vs, 380 sh
20	612 + 1		229 ± 1	405 vs, 375 sh
30	613 + 1		230 ± 1	405 vs, 370 vw
40	613 + 1		230 ± 1	405 s, 385 s
50	612 ± 1		229 ± 1	405 s, 370 m
	692 + 2	922 ± 3	588 ± 5	
60	693 ± 1	939 ± 2	611 ± 3	400 s, 380 s
70	691 + 8	915 ± 9	578 ± 17	415 m, 395 m
80	693 + 5	937 ± 7	608 ± 12	405 m, 385 m
90	687 ± 7	931 ± 9	595 \pm 16	415 w, 395 w
100	702 ± 2	935 ± 4	614 ± 6	_

were assigned cubic indexes with lattice parameter $a \sim 612$ pm. Of the 17 possible sets of the cubic space groups⁹, index assignment eliminates 14 sets of the cubic space groups; the remaining three sets include only primitive space groups. The 9 possible space groups include the T_{d}^{4} ·P43n group, which is a space group in which the initial pure component Ag₃AsO₄ crystallizes². A change in the lattice parameters of the cubic mixed crystals is not observable and is within experimental error. In samples containing 50 mol% Ag₃VO₄ a structural change from cubic to tetragonal occurs, probably resulting in a mixture of two mixed crystals, cubic with a = 612 pm and tetragonal with a = 922 and c = 692 pm. The lattice parameters of the samples with 60-90 mol% Ag₃VO₄ are listed in Table I. The Ag₃VO₄ sample was assigned tetragonal indexes with a = 935 and c = 702 pm. It was not possible to determine a single available diffraction class from quenching of indexes alone; only the number could be limited¹.

Infrared Spectra

Because of the coincidence of the $v_1 VO_4 \sim v_3 VO_4 \sim v_1 AsO_4 \sim v_3 AsO_4 \sim 800 \text{ cm}^{-1}$ and $v_2 VO_4 \sim v_4 VO_4 \sim v_2 AsO_4 \sim 350 \text{ cm}^{-1}$ vibrations, only the $v_4 AsO_4 \sim 400 \text{ cm}^{-1}$ vibration can be employed for confirming correlation in mixed crystals. In addition to coincidence, strong and broad bands of degenerate vibrations make correlation difficult.

Theoretical analysis of the spectra of the AsO₄³⁻ species in Ag₃AsO₄ and in cubic mixed crystals with space group T_d^4 with site-symmetry T follows from the $G_M(T_d) \rightarrow$ $\rightarrow G_S(T) \rightarrow G_F(T_d)$ or $G_S(T) \rightarrow G_{S-eff}(C_3)$ correlation. For deformation vibration δ OAsO, $F_2(T_d) \rightarrow F(T) \rightarrow F_1 + F_2(T_d)$. The effective site-symmetry appears in splitting of F into two vibration active vibrations in the IR spectrum: $F(T) \rightarrow A +$ $+ E(C_3)$.

In cubic mixed crystals containing 40 mol% vanadate, where multiplication of the vibrations in factor group $(Z_p = 2)$ does not appear, the deformation vibration band v_4AsO_4 consists of two bands with maxima at 405 and 385 cm⁻¹. Increasing the content of Ag₃VO₄ increases the splitting of this vibration. In cubic mixed crystals this is a result of symmetry decrease $G_s(T) \rightarrow G_{s-eff}(C_3)$ as a result of lattice vibrations of the T(F) and R(F) types.* The spectrum of Ag₃AsO₄ in the infrared region (825, 770, 405, 380 sh, 345 sh) is basically in agreement with $G_{s-eff} \equiv C_3$. The numbers of active vibrations of the symmetry types considered in groups T and C_3 or T_d and C_3 are different and the experimental data favour group C_3 .

Group analysis could not be carried out for tetragonal mixed crystals or for Ag_3VO_4 because of lack of knowledge of the space groups and because of coincidence of the VO_4^{3-} and AsO_4^{3-} vibrations.

The lattice vibrations could not be found because of the poor quality and irreproducible Raman spectra.

REFERENCES

- 1. Hájek B., Muck A., Smrčková O.: This Journal 44, 823 (1979).
- 2. Helmholz L., Levin R.: J. Amer. Chem. Soc. 64, 354 (1942).
- 3. Duval C., Lecomte J.: C. R. Acad. Sci. 239, 249 (1954).
- 4. Griffith W. P., Wickins T. D.: J. Chem. Soc. A 1087 (1966).
- 5. Griffith W. P., Lesniak P. J. B.: J. Chem. Soc. A 1066 (1969).
- 6. Čáp J.: Thesis. Prague Institute of Chemical Technology, Prague 1976.
- 7. Muck A., Ondráček J., Hájek B.: Sb. Vys. Šk. Chemicko-Technol. Prague, B24, 19 (1979).
- 8. Gattow G., Piotter H.: Z. Anorg. Allg. Chem. 336, 1 (1965).
- International Tables for X-Ray Crystallography, Vol. II, p. 147. The Kynoch Press, Birmingham 1965.

Translated by M. Štulíková.